Folgende 11 Datenqualitätskritieren können angewendet werden. Selten werden alle gleichzeit angewendet. Vielmehr wird eine Auswahl anhand Sinnhaftigkeit und Zweck genommen. Bei erstmaliger Definition der Datenqualitätkriteren empfehlen wir die 2-3 offensichtlichsten anzuwenden. Meistens bestehen diese aus den ersten 6 Kriterien der Auflistung.
Datenqualitätskriterien (Data Quality Dimensions)
Vollständigkeit
Eindeutigkeit
Korrektheit
Aktualität
Genauigkeit
Konsistenz
Redundanzfreiheit
Relevanz
Einheitlichkeit
Zuverlässigkeit
Verständlichkeit
1. Vollständigkeit
Titel | Vollständigkeit (Completeness) |
---|---|
Definition | Ein Objekt muss alle notwendigen Attribute im jeweiligen Ausgabekanal enthalten. (Pflichtfelder) |
Referenz | Im Contentdesk.io wird die Vollständigkeit (100%) automatisch anhand der definierten Pflichtfelder einer Produktfamilie berechnet. (siehe Dashboard) |
Kennzahl | Erreichungsgrad Vollständigkeit = 0 - 100% |
Messeinheit | Prozent |
Beispiel | Vollständigkeit eines Objektes der Produktfamilie “Ort & Sehenwürdigkeit”
|
Beispiel Berechnung | 1000 Objekte sind im System. Davon sind 227 nicht Vollständig. 1000 - 227 = 773 |
2. Eindeutigkeit
Titel | Eindeutigkeit (Uniqueness) / Doubletten |
Definition | Jedes Objekt muss eindeutig interpretierbar sein. |
Referenz | Objekte, das gegen sich selbst oder sein Gegenstück in einem anderen Objekt gemessen wurde. |
Kennzahl | Erreichungsgrad Eindeutigkeit = 0 - 100% |
Messeinheit | Prozent |
Beispiel | Zwei Objekte (z.B. “Ort & Sehenwürdigkeit”) mit unterschiedlicher SKU unterscheiden sich in allen weiteren Attributen z.B. nur in einem weiteren Merkmal (Telefon) SKU 1-> Telefon = +41 71 274 99 17 Alle weiteren Attribute wie z.B. Name, Vorname, Straße, PLZ, Ort, sind identisch. Es besteht berechtigter Zweifel, ob es sich hier tatsächlich um zwei unterschiedliche Objekte handelt. Zusätzlich entsteht der Zweifel, ob eines oder sogar keine der Telefonnummer richtig ist. Somit sind beide Objekte nicht mehr eindeutig interpretierbar. |
Beispiel Berechnung | Statt 1000 Objekte ergibt die Doublettenanalyse 960 Objekte. 960 / 1000 x 100 = 96% Eindeutigkeit |
3. Korrektheit
Titel | Korrektheit (Correctness) |
Definition | Die Objekte müssen mit der Realität übereinstimmen |
Referenz | Mapping gegen Objekte, deren Korrektheit bestätigt ist oder eine definierte, abgestimmte Plausibilitätsregel. |
Kennzahl | Erreichungsgrad Korrektheit: 0 - 100% |
Messeinheit | Prozent |
Beispiel | Das Enddatum einer Veranstaltung ist bereits Vergangenheit. Es ist zu prüfen, wie vielen Veranstaltungen bereits nicht mehr aktuell sind. (Wird im Contentdesk.io täglich automatisch geprüft.) |
Beispiel Berechnung | 1000 Objekte liegen vor. Davon sind im Attribut "End-Datum" 50 Objekte mit dem Datum 01.01.2020 hinterlegt. 1000 - 50 = 950 |